
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 365
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Design and Verification of Efficient Majority Logic
Fault Detection and Correction for Memory

Applications
Harshitha B, Karthik M

Abstract— Memory is important for storing data and also to retrieve data in any digital circuit but the main problem is SEUs (Single Event
Upsets). SEUs are the bigger concerns for memory applications as it alters the normal working of digital circuits and gives an error. This
paper presents a fault detection and correction method which reduces access time when there is no error while reading data for difference-
set cyclic codes with majority logic decoding as it can be applied to correct a large number of errors.

Index Terms— Bits, Cyclic-codes, Decoding, Encoding, Error, Fault, Majority-logic, Memory

—————————— ——————————

1 INTRODUCTION
 There has been a significant increase in memory failures
which is a major reliability concern for applications [1]. Tech-
nology scaling impact affects reliability of memory applica-
tions like spacecraft, terrestrial environments and avionics
electronics. There are two types of errors or failures.

1. Soft errors.
2. Hard errors.

Soft errors are not permanent and are due to upset of a semi-
conductor device. Hard errors are permanent and are due to
physical characteristics of the device [1].

Techniques to mitigate Soft Errors:

 By far, the most effective method of dealing with soft errors
in memory components is by employing additional circuitry
for error detection and/or correction. In its simplest form, er-
ror detection consists of adding a single bit to store the parity
(odd or even) of each data word (regardless of word length).
Whenever data are retrieved, a check is run comparing the
parity of the stored data to its parity bit. If a single error has
occurred, the check will reveal that the parity of the data does
not match the parity bit. Thus, the parity system allows for the
detection of a soft error for a minimal cost in terms of circuit
complexity and memory width (only a single bit is added to
each word). The two disadvantages of this system are that the
detected error cannot be corrected and if a double error has
occurred then the check will not reveal that anything is wrong
since the parity will match. This is true for any even number of
errors. For example, if the data were stored with odd parity,
the first error changes the odd parity to even parity (detectable

error), but the second error changes the parity back to odd
(non detectable error) [3]. In order to address these shortcom-

ings, error detection and correction (EDAC) or error correction
codes (ECC) are employed. Typically, error correction is
achieved by adding extra bits to each data vector encoding the
data so that the “information distance” between any two pos-
sible data vectors is, at least, three.

2 LITERATURE SURVEY
Some commonly used Decoding types are techniques are:

• Triple modular redundancy (TMR)
• Error correction codes (ECCs)

TMR is a special case of the von Neumann method consisting
of three versions of the design in parallel, with a majority vot-
er selecting the correct output. As the method suggests, the
complexity overhead would be three times plus the complexi-
ty of the majority voter and thus increasing the power con-
sumption. For memories, it turned out that ECC codes are the
best way to mitigate memory soft errors [3]. For terrestrial
radiation environments where there is a low soft error rate
(SER), codes like single error correction and double error de-
tection (SEC-DED), are a good solution, due to their low en-
coding and decoding complexity.
 Among the ECC codes that meet the requirements of higher
error correction capability and low decoding complexity, cy-
clic codes have been identified as good candidates, due to
their property of being majority logic (ML) decodable [6]. A
subgroup of the low-density parity check (LDPC) codes,
which belongs to the family of the ML decodable codes, has
been researched in [7]-[9].
 The main reason for using ML decoding is that it is very
simple to implement and thus it is very practical and has low
complexity. The drawback of ML decoding is that, for a code-
word of certain bits, it takes as many cycles in the decoding
process, posing a big impact on system performance [2]. This
has motivated the use of a fault detector module [9].

————————————————
• Harshitha B, Assistant Professor, Dept. of ECE, B.M.S. College of Engi-

neering, Bangalore, India – 560019
E-mail: harshithab.ece@bmsce.ac.in

• Karthik.M, M.Tech (Electronics), B.M.S. College of Engineering, Banga-
lore, India – 560019
E-mail:karthik.raj016@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 366
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

3 SCHEMATIC VIEW OF THE SYSTEM:
A general schematic of a memory system is depicted in Fig.1
for the usage of an encoder and decoder. Initially, the data
words are encoded and then stored in the memory. When the
memory is read, the codeword is then fed throught the decod-
er before sent to the output for further processing. In this de-
coding process, the data word is corrected from all bit-flips
that it might have suffered while being stored in the memory.

Encoder Memory Decoder

Message Bits
M(x)

Clock (Clk)

Reset

Message Bits
M(x)

Read/ Write

Fig.1. Memory system schematic with Encoder & Decoder

4 DATA ENCODING
In order to reduce complexity of the design and increase the
computation time, we go for cyclic encoding. Cyclic codes
form an important subclass of linear codes. These codes are
attractive for two reasons: first, encoding and syndrome com-
putation can be implemented easily by employing [4].

Shift registers with feedback connections (or linear sequen-
tial circuits) and second, because they have considerable in-
herent algebraic structure, it is possible to find various practi-
cal methods for decoding them. If the components of an n-
tuple v = (v0, v1. . . , vn-1) are cyclically shifted one place to the
right, we obtain another n-tuple, v(1) = (vn-1, v0. . . , vn-2) which
is called a cyclic shift to v. if the components of v are cyclically
shifted I places to the right, the resultant n-tuple would be
v(i) = (vn-i, vn-i+1,, vn-1 ,v0, v1 , vn-i-1)

Clearly, cyclically shifting v I places to the right is equiva-
lent to cyclically shifting vn-i places to the left. An (n, k) linear
code C is called a cyclic code if every cyclic shift of a code vec-
tor in C is also a code vector in C.

Consider D(x) as message bits and V(x) as code vector, G(x)
as generator polynomial. In (n,k) cyclic codes n represents
number of encoded bits and k represents message bits. n-k
represents remainder bits to form code vector.

Remainder bits R(x) can be obtained by dividing X(n-k) and
M(x) by the generator polynomial G(x).

Remainder bits are combined with message bits to form

code vector V(x) = R(x).M(x)
Fig.2. shows the general block diagram of cyclic encoder.

R0 + R0 R0R0 +++

G1 Gn-k-1G2

GATE
Feedback

Before
Shift

Messgae
Input M(x)Remainder R(x)

Fig.2. Cyclic Encoder Block Diagram

5 DATA DECODING
There are two ways for implementing decoder. The first one is
called the type-1 ML decoder, which determines upon XOR
combinations of the syndrome, which bits need to be corrected
[4]. The second one is the type-2 ML decoder that calculates
directly out of the codeword bits the information of correct-
ness of the current bit under decoding [4]. Both are quite simi-
lar but when it comes to implementation, the type-2 uses less
area, as it does not calculate the syndrome as an intermediate
step. Therefore, this paper focuses only on this one.

NORMAL ML DECODER:
The ML decoder is a simple and powerful decoder, capable of
correcting multiple random bit-flips depending on the number
of parity check equations. It consists of four parts: 1) a cyclic
shift register; 2) an XOR matrix; 3) a majority gate; and 4) an
XOR for correcting the codeword bit under decoding as illus-
trated in Fig.3.
 The input signal is initially stored into the cyclicl shift regis-
ter and shifted through all the taps. The intermediate values in
each tap are then used to calculate the results {Aj} of the check
sum equations from the XOR matrix. In the Nth cycle, the re-
sult has reached the final tap, producing the output signal y
(which is the decoded version of input x).
 As stated before, input x might correspond to wrong data
corrupted by a soft error. To handle this situation, the decoder
would behave as follows. After the initial step, in which the
codeword is loaded into the cyclic shift register, the decoding
starts by calculating the parity check equations hardwired in
the XOR matrix. The resulting sums {Aj} are then forwarded to
the majority gate for evaluating its correctness. If the number
of 1’s received in {Aj} is greater than the number of 0’s, that
would mean that the current bit under decoding is wrong, and
a signal to correct it would be triggered. Otherwise, the bit
under decoding would be correct and no extra operations
would be needed on it.
 In the next step, the content of the registers are rotated and
the above procedure is repeated until all N codeword bits
have been processed. Finally, the parity check sums should be
zero if the codeword has been correctly decoded. Further de-
tails on how this algorithm works can be found in [2]. The
whole algorithm is depicted in Fig.4. The previous algorithm
needs as many cycles as the number of bits in the input signal,
which is alsothe number of taps, N, in the decoder. This is a

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 367
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

big impact on the performance of the system, depending on
the size of the code. For example, for a codeword of 73 bits, the
decoding would take 73 cycles, which would be excessive for
most applications.

R RRRRR

XOR Matrix

Majority Gate

+
X[N-1] X[0]X[1]X[N-4]X[N-3]X[N-2]

B1 BjBj-1B3B2

Y[0]

Y[N-4]
Y[1]

III

II

IV I

Fig.3. Schematic of an ML decoder

Load Cyclic
 Shift Register

i=0

Cyclic Shift
i++

Correct Bit
Under

Decoding

Evaluate
XOR-Matrix

END

Majority Gate
of ‘1’ > # of ‘0’

I = N

yes

 NO

YES

Fig.4. Flowchart of the ML algorithm

ADVANCED ML DECODER:
 In general, the decoding algorithm is still the same as the
one in the normal ML decoder version. The difference is that,
instead of decoding all code word bits by processing the ML
decoding during N cycles, the proposed method stops inter-
mediately in the third cycle if the data read from the memory
is error free, as illustrated in Fig.5.
 If in the first three cycles of the decoding process, the eval-
uation of the XOR matrix for all {Aj} is “0”, the code word is
determined to be error free and forwarded directly to the out-
put. If the {Aj} contain in any of the three cycles at least a “1”,
the proposed method would continue the whole decoding
process in order to eliminate the errors.
 A detailed schematic of the proposed design is shown in
Fig.6. The figure shows the basic ML decoder with an N-tap
shift register, an XOR array to calculate the orthogonal parity
check sums and a majority gate for deciding if the current bit
under decoding needs to be inverted. Those components are
the same as the ones for the plain ML decoder shown in Fig.3.
The additional hardware to perform the error detection is il-

lustrated in Fig.6 as: 1) the control unit which triggers a finish
flag when no errors are detected after the third cycle and 2)
the output tristate buffers. The output tristate buffers are al-
ways in high impedence unless the control unit sends the fin-
ish signal so that the current values of the shift register are
forwarded to the output.
 The control schematic is illustrated in Fig.7. The control
unit manages the detection process. It uses a counter that
counts up to three, which distinguishes the first three itera-
tions of the ML decoding. In these first three iterations, the
control unit evaluates {Aj} by combining them with the OR1
function. This value is fed into a three-stage register, which
holds the results of the last three cycles. In the third cycle, the
OR2 gate evaluates the content of the detection register. When
the result is “0”, the FSM sends out the finish signal indicating
that the processed word is error-free. In the other case, if the
result is “1”, the ML decoding process runs until the end.

Load Cyclic
 Shift Register

i=0

Cyclic Shift
i++

Correct Bit
Under

Decoding

Evaluate
XOR-Matrix

END

Majority Gate
of ‘1’ < # of ‘0’

i = N

yes

 NO

YES

i=3 &
Detection

Register=”000"

i<=3
Load

Detection
Register

YES

Fig.5. Flow diagram of the MLDD algorithm

 This clearly provides a performance improvement respect
to the traditional method. Most of the words would only take
three cycles (five, if we consider the other two for in-
put/output) and only those with errors (which should be a
minority) would need to perform the whole decoding process.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 368
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

R RRRRR

XOR Matrix

Majority Gate

+
X[N-1] X[0]X[1]X[N-4]X[N-3]X[N-2]

B1 BjBj-1B3B2

Y[0]

Y[N-3]
Y[N-4]
Y[1]

Y[N-1]
Y[N-2]

II

I
Control

Unit

Finish

Fig.6. Schematic of MLDD

Fig.7. Schematic of the control unit

6 SIMULATION RESULTS
DATA ENCODER:
Encoding is done for the signal 101. The generated code vector
is 1100101.

Fig.8. Cyclic encoder simulation output

DATA ML DECODER:
Normal decoder requires N number of cycles to decode the
message bits. For (7, 3) encoding it takes about 7 cycles to de-
code the data from the memory. To load the shift register it
takes first six cycles then from the seventh cycle decoding pro-
cess starts for next 7 cycles (N bits).

Fig.9. ML decoder without error simulation output

Fig.10. ML decoder with error simulation output

MLD DECODER:

Fig.11. MLD decoder without error simulation output

Fig.12. MLD decoder with error simulation output

7 CONCLUSION
 In this paper, a fault-detection mechanism MLDD has been
presented based on ML decoding using the DSCCs. One example
codes were simulated and test results show that the proposed
technique is able to detect bit-flips in the first three cycles of the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 369
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

decoding process. This improves the performance of the design
with respect to the traditional MLD approach. The MLDD error
detector module has been designed in a way that is independent
of the code size. This makes its overhead quite reduced compared
with other traditional approaches such as the syndrome calcula-
tion (SFD). The ML decoder circuitry is used here as a fault detec-
tor so that read operations are accelerated with almost no addi-
tional hardware cost. The results show that the properties of
DSCC-LDPC enable efficient fault detection.

REFERENCES
[1] C.W. Slayman, “Cache and memory error detection, correction, and reduction

techniques for terrestrial servers and workstations”, IEEE Trans. Device Ma-
ter. Vol 5, no. 3, pp. 397-404, Sep. 2005

[2] R.C. Baumann, “Radiation-induced soft errors in advanced semicon-
ductor technologies”, IEEE Trans. Device Mater. Vol.5, no. 3, 301-316,
Sep. 2005

[3] R.Naseer and J.Draper, “DEC ECC design to improve memory relia-
bility in sub-100 nm technologies”, in Proc. IEEE ICECS, 2008, pp.
586-589

[4] S.Lin and D.J. Costello, Error Control Coding 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall

[5] I.S.Reed, “A class of multiple-error correcting codes and the decod-
ing scheme”, IRE Trans. Inf. Theory

[6] J.L. Massey Threshold Decoding. Cambridge, MA: MIT Press
[7] S.Ghosh and P.D.Lincoln, “Low-density parity check codes for error

correction in nanoscale memory”, SRI Comput. Sci. Lab. Tech.
[8] B. Vasic and S.K.Chilappagari, “An information theoretical frame-

work for analysis and design of nanoscale fault-tolerant memories
based on low-density parity-check codes”, IEEE Trans. Circuits Syst.

[9] H.Naeimi and A.DeHon, “Fault secure encoder and decoder for Na-
noMemory applications”, IEEE Trans. Very Large Scale Integr.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Literature Survey
	3 Schematic View of the System:
	4 Data Encoding
	5 Data Decoding
	6 Simulation Results
	7 Conclusion
	References

